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Abstract
The supersymmetric version of the descent equations following from the Wess–
Zumino consistency condition is discussed. A systematic framework in order
to solve them is proposed.

PACS numbers: 11.15.−q, 11.30.−j

1. Introduction

One of the most attractive properties of supersymmetric quantum field theories is their softer
ultraviolet behaviour. Supersymmetry has allowed us to establish several nonrenormalization
theorems [1], which have provided examples of gauge theories with vanishing beta function
to all orders of perturbation theory.

Recently, a criterion of general applicability for the ultraviolet finiteness has been proved
[2]. The result allows us to give a purely cohomological algebraic characterization of the
ultraviolet behaviour of gauge field theories, including the supersymmetric models as well.
Moreover, it also covers the case of theories whose beta function receives only one-loop
contribution, as occurs for the N = 2 supersymmetric gauge theories in four dimensions.

The aforementioned criterion makes use of the set of descent equations stemming from
the Wess–Zumino consistency condition. In the case of supersymmetric theories it turns out
that these equations take a peculiar form, leading to a system of nonstandard equations which
highly constrains the possible invariant counterterms and anomalies allowed by the gauge
invariance and by the global supersymmetry. These equations have been proved to be very
useful in the algebraic proof of the ultraviolet finiteness properties of both N = 2 [3] and
N = 4 supersymmetric gauge theories [4, 5].

It is worth mentioning that, unlike the nonsupersymmetric case, where systematic
procedures are available in order to solve the descent equations [6, 7], in the supersymmetric
case the task is considerably more difficult, even when a superspace formulation is
available [8].
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The aim of this paper is to pursue the investigation of the structure of the descent equations
for supersymmetric gauge theories by providing a systematic framework to solve them.

The paper is organized as follows. In section 2 a short review of the quantization of the
supersymmetric gauge theories is given. In section 3 the supersymmetric descent equations
are discussed and a way to solve them is presented. In section 4 the example of the N = 1
supersymmetric Yang–Mills in four dimensions is worked out.

2. Algebraic structure of supersymmetric gauge theories

A brief account of the quantization of the supersymmetric gauge theories in the Wess–Zumino
gauge is given here, following the procedure outlined in [4, 9–11]. Let us start by considering
a supersymmetric gauge theory described by the classical action �inv(�), where � denotes
collectively the gauge and matter fields. In the following we shall refer to renormalizable gauge
theories in four dimensions, the generalization to other dimensions being straightforward.

In the absence of central charges and adopting the Wess–Zumino gauge, the
supersymmetry algebra has the typical form{
Qi

α, Q̄
j
.
α

}
= −2iδijσµ

α
.
α
∂µ + (gauge transformations)+ (equations of motion)

(1){
Qi

α,Q
j

β

}
=
{
Q̄i

.
α
, Q̄

j

β̇

}
= (gauge transformations)+ (equations of motion)

where Qi
α, Q̄

j
.
α

are the supersymmetric charges, with α,
.
α= 1, 2 being the spinor indices and

i, j = 1, ..., N labelling the number of supersymmetries.
The action�inv(�) is left invariant by the chargesQi

α, Q̄
j
.
α
. It is also required to be invariant

under gauge transformations, which give rise to the nilpotent BRST operator s when the local
gauge parameter is replaced by the Faddeev–Popov ghost. In order to properly quantize the
theory, one has to introduce the gauge-fixing and the antifield terms in the action. The standard
procedure in order to take into account both BRST and supersymmetry invariance, is to collect
them into a unique generalized BRST operator Q [4, 9–11]. In addition to the Faddeev–Popov
ghost, the introduction of constant ghosts εαi , ε̄

.
α
j corresponding to global supersymmetry is

required. The resulting generalized operator Q is found to be

Q = s + εαi Q
i
α + ε̄

.
α
j Q̄

j
.
α
. (2)

The action �inv(�) is invariant under the Q-transformations which, due to algebra (1), turn
out to be nilpotent only up to equations of motion and spacetime translations, namely

Q2 = εµ∂µ + (equations of motion) (3)

with εµ = −2iεαi σ
µ

α
.
α
ε̄

.
α
i .

Hence, the complete classical action � is given by

� = �inv(�) + �gf(�, π, c, c̄) + �ext(�,�∗, c, c∗) (4)

where �gf(�, π, c, c̄) is the gauge-fixing action depending on the gauge and matter fields
�, the Lagrange multiplier π, the Faddeev–Popov ghost c and antighost c̄. The term
�ext(�,�∗, c, c∗) denotes the antifield action, which is constructed by coupling the nonlinear
Q-transformations to external fields �∗ and c∗ associated, respectively, with � and c, i.e.

�ext(�,�∗, c, c∗) =
∫

d4x

(∑
�

�∗Q� + c∗Qc + (terms quadratic in�∗, c∗)

)
. (5)

As is well known, the terms quadratic in the external fields (�∗, c∗) are needed in order to
account for the on-shell nilpotency of the generalized operator Q [4, 9–11]. The invariance of
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the action �inv(�) under Q may now be translated into the classical Slavnov–Taylor identity,
whose typical form is [3, 5, 12]

S(�) = εµ�cl
µ (6)

with

S(�) =
∫

d4x

(∑
�

δ�

δ�∗
δ�

δ�
+
δ�

δc∗
δ�

δc
+ Qc̄

δ�

δc̄
+ Qπ

δ�

δπ

)
. (7)

It is worth underlining that the breaking term �cl
µ is a classical breaking, as it turns out to be

linear in the quantum fields. As such, it will not be affected at the quantum level [6].
Introducing the so-called linearized Slavnov–Taylor operator B� ,

B� =
∫

d4x

(∑
�

(
δ�

δ�∗
δ

δ�
+
δ�

δ�

δ

δ�∗

)
+
δ�

δc∗
δ

δc
+
δ�

δc

δ

δc∗ + Qc̄
δ

δc̄
+ Qπ

δ

δπ

)
(8)

it follows that

B�B� = εµ∂µ (9)

which means that B� is nilpotent only modulo a total derivative. Of course, this property
follows from the supersymmetric structure of the theory. Moreover, the operator B� is strictly
nilpotent when acting on the space of the integrated local functionals of the fields, antifields
and their derivatives. This is precisely the functional space to which all invariant counterterms
and anomalies belong.

3. The supersymmetric descent equations

In order to discuss the structure of the supersymmetric descent equations, let us begin by
considering the Wess–Zumino consistency condition for the invariant counterterms which can
be freely added to any order of the perturbation theory, namely

B�

∫
d4x �0 = 0 (10)

where �0 has the same quantum numbers as the classical Lagrangian, i.e. it is a local
polynomial of dimension 4 and vanishing Faddeev–Popov charge. The integrated consistency
condition (10) can be translated at the local level as

B��
0 = ∂µ�1

µ (11)

where �1
µ is a local polynomial of Faddeev–Popov charge 1 and dimension 3. Applying now

the operator B� to both sides of (11) and making use of equation (9), one obtains the condition

∂µ
(B��

1
µ − εµ�

0) = 0 (12)

which, due to the algebraic Poincaré lemma [6], implies

B��
1
µ = εµ�

0 + ∂ν�2
[νµ] (13)

for some local polynomial�2
[νµ] antisymmetric in the Lorentz indices µ, ν and with Faddeev–

Popov charge 2. This procedure can be easily iterated, yielding the following set of descent
equations:

B��
0 = ∂µ�1

µ

B��
1
µ = ∂ν�2

[νµ] + εµ�
0

B��
2
[µν] = ∂ρ�3

[ρµν] + εµ�
1
ν − εν�

1
µ (14)

B��
3
[µνρ] = ∂σ�4

[σµνρ] + εµ�
2
[νρ] + ερ�

2
[µν] + εν�

2
[ρµ]

B��
4
[µνρσ ] = εµ�

3
[νρσ ] − εσ�

3
[µνρ] + ερ�

3
[σµν] − εν�

3
[ρσµ].
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It should be observed that these equations are of an unusual type, as the cocycles with lower
Faddeev–Popov charge appear in the equations with higher Faddeev–Popov charge, turning
system (14) highly nontrivial. We also remark that the last equation for �4

[µνρσ ] is not
homogeneous—a property which strongly constrains the possible solutions. Equations (14)
immediately generalize to possible anomalies and cocycles with arbitrary Faddeev–Popov
charge. To some extent, system (14) displays a certain similarity with the descent equations
in N = 1 superspace [8]. Actually, it is possible to solve equations (14) in a rather direct
way by making use of the supersymmetric structure of the theory. This goal is achieved by
introducing an operator Wµ which, together with the linearized Slavnov–Taylor operator B� ,
gives rise to the algebra

{Wµ,B�} = ∂µ {Wµ,Wν} = 0.

The operator Wµ was introduced first in the case of topological field theories [13, 14], and
subsequently in the case of extended supersymmetry [2, 5]. In the next section the explicit
form of Wµ for the case of N = 1 gauge theories will be given.

Once the operator Wµ has been introduced, it can be used as a climbing operator for
the descent equations (14). It turns out in fact that, provided an explicit form for �4

[µνρσ ] is
available, a solution of the system is obtained by repeated applications of Wµ on �4

[µνρσ ],
according to

�0 = 1
4!WµWνWρWσ�4

[σρνµ] �1
µ = 1

3!WνWρWσ�4
[σρνµ]

�2
[µν] = 1

2!WρWσ�4
[σρµν] �3

[µνρ] = Wσ�4
[σµνρ].

(15)

We are thus left with the characterization of �4
[µνρσ ]. This point can be resolved by introducing

a new operator F� defined as

F� = B� − εµWµ. (16)

Unlike B�, the new operator F� has the remarkable property of being strictly nilpotent, i.e.

F�F� = 0 {Wµ,F�} = ∂µ.

In particular, thanks to (15), the last equation for �4
[µνρσ ] in (14) can be cast in the form of a

homogeneous equation

F��
4
[µνρσ ] = 0. (17)

This means that �4
[µνρσ ] can be obtained from the knowledge of the cohomology of the

nilpotent operator F� , for which standard techniques are available [7]. This gives us a
systematic framework for solving the descent equations in the supersymmetric case.

4. The example of N = 1 super Yang–Mills theory

The N = 1 super Yang–Mills action SN=1 in the Wess–Zumino gauge is given by

SN=1 = 1

g2
Tr
∫

d4x
(
− 1

4FµνF
µν − iλασµ

αβ̇
Dµλ̄

β̇ + 1
2D2

)
(18)

where Fµν = ∂µAν − ∂νAµ + [Aµ,Aν] is the field strength, λα and λ̄
β̇ are two-component

spinors and D is an auxiliary scalar field, introduced for the off-shellness closure of the
supersymmetric algebra.

The action SN=1 is invariant under both BRST and supersymmetry transformations.
Following the general procedure, we shall collect the BRST differential s and the
supersymmetry generators (Qα, Q̄ .

α) into an extended operator Q,

Q = s + εαQα + ε̄
.
αQ̄ .

α (19)
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where εα and ε̄
.
α are global ghosts. The operator Q acts on the fields as

QAµ = −Dµc + εασµαβ̇ λ̄
β̇ + λασµαβ̇ ε̄

β̇

Qλβ = {c, λβ} − 1
2ε

α (σµν)
β
αFµν − εβD

Qλ̄
β̇ = {c, λ̄β̇} + 1

2 (σ̄
µν)

β̇
.
α
ε̄

.
αFµν + ε̄β̇D

QD = [c,D] − iεασµ

αβ̇
Dµλ̄

β̇ + iDµλ
ασ

µ

αβ̇
ε̄β̇

Qc = c2 + 2iεασµαβ̇ ε̄
β̇ Aµ.

(20)

For the complete gauge-fixed action � we have

� = SN=1 + Sgf + Sext (21)

where Sgf is the gauge-fixing term in the Landau gauge and Sext contains the coupling of the
nonlinear transformationsQ�i to the antifields�∗

i = (
A∗

µ, c∗, λα∗, λ̄∗
.
α, D∗). They are given by

Sgf = Tr
∫

d4xQ(c̄∂A)

Sext = Tr
∫

d4x
(
A∗

µQAµ + c∗Qc + λα∗Qλα + λ̄
∗
.
αQλ̄

.
α + D∗QD) (22)

with Qc̄ = b and Qb = −2iεασµ

αβ̇
ε̄β̇∂µc̄.

As usual, c̄, b denote the antighost and the Lagrange multiplier. The operator Q turns out
to be nilpotent only up to spacetime translations:

Q2 = −2iεασµ

αβ̇
ε̄β̇∂µ. (23)

The complete action � satisfies the following Slavnov–Taylor identity:

S(�) = −2iεασµ

αβ̇
ε̄β̇�cl

µ (24)

where

S(�) = Tr
∫

d4x

(
δ�

δ�∗
i

δ�

δ�i

+ b
δ�

δc̄
− 2iεασµ

αβ̇
ε̄β̇∂µc̄

δ�

δb

)
(25)

and the classical breaking �cl
µ is

�cl
µ = Tr

∫
d4x

(−A∗ν∂µAν + c∗∂µc + λα∗∂µλα + λ̄
∗
.
α∂µλ̄

.
α − D∗∂µD

)
. (26)

From equations (24) and (25) it follows that the linearized operator B� defined as

B� = Tr
∫

d4x

(
δ�

δ�∗
i

δ

δ�i

+
δ�

δ�i

δ

δ�∗
i

+ b
δ

δc̄
− 2iεασµ

αβ̇
ε̄β̇∂µc̄

δ

δb

)
(27)

is nilpotent modulo a total spacetime derivative, namely

B�B� = εαdα (28)

with the operator dα given by

dα = −2iσµ

αβ̇
ε̄β̇∂µ. (29)

The integrated cohomology of B� is characterized by a consistency condition of the kind (10)
which, in the present case, can be written as [15]

B��
0 = dα�

1α B��
1α = dβ�

2[βα] + εα�0 B��
2[βα] = εβ�1α − εα�1β. (30)

It should be noted that the presence of the operator dα in the first equation of (30) is due to the
supersymmetric character of the theory, followed by observing that in the nonsupersymmetric
case the pure Yang–Mills Lagrangian Tr

(
FµνF

µν
)

is pointwise invariant.
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Defining now the climbing operator Wα

Wα =
[

∂

∂εα
, B�

]
(31)

it is easily verified that

{Wα, B�} = dα {Wα,Wβ} = 0. (32)

As discussed in the previous section, the next step is the introduction of the operator
F�:

F� = B� − εαWα. (33)

Accordingly, the last equation of (30) reads

F��
2[βα] = 0. (34)

Furthermore, up to trivial exact cocycles, �2[βα] is found to be

�2[βα] = εβα Tr λγ λγ . (35)

The higher cocycles are obtained by applying repeatedly the operator Wα on �2[βα]:

�0 = 1
2WαWβ�

2[βα] �1α = Wβ�
2[βα]. (36)

Acting now with ∂/∂g on both sides of the Slavnov–Taylor identity (24) and observing
that the linear breaking term �cl

µ does not depend on the coupling constant g, we get the
condition

B�

∂�

∂g
= 0 (37)

which shows that ∂�/∂g is invariant under the action of B� . In fact ∂�/∂g identifies the
cohomology of B� in the sector of the integrated polynomials with dimension 4 and ghost
number zero, belonging to the same cohomology class of

∫
d4x �0.

From equations (36), the usefulness of the operator Wµ now becomes apparent. In
particular, it allows us to establish the following relation:

∂�

∂g
= 1

4g3
εαβWαWβTr

∫
d4x λγ λγ . (38)

Equation (38) implies that the origin of the action of N = 1 super Yang–Mills can be traced
back to the gauge invariant local polynomial Tr

∫
d4x λγ λγ . This relationship has recently

been pointed out in [15].
The construction of the nilpotent operator F� of equation (16) is easily generalized to

the cases of N = 2 and N = 4 gauge theories, so that the analogue of equation (38) can be
worked out from the knowledge of its cohomology, a representative of which has been given
in [3, 5].

5. Conclusion

The structure of the descent equations for supersymmetric gauge theories has been discussed.
Due to the supersymmetry algebra (1), these equations are of an unusual type, a property
which makes their analysis rather cumbersome. However, it has been shown that a suitable
climbing operatorWµ can be introduced by making use of the proper supersymmetric algebra.
Provided the solution �4

[µνρσ ] of the last equation of system (14) is available, a solution of
the whole system is obtained by repeated applications of Wµ on �4

[µνρσ ]. Concerning the
characterization of �4

[µνρσ ], we have been able to prove that it belongs to the cohomology of
the nilpotent operator to F� of equation (16) . As a consequence, it can be determined by
standard cohomology arguments [6, 7], thus providing a systematic framework for analysing
the supersymmetric version of the descent equations.
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